SGD-11-G1-P1 Warning:- Please write your Roll No. in the space provided and sign Roll No-----(Inter Part - I) (Session 2019-21 to 2022-24) Sig. of Student ----Chemistry (Objective) (Group - I) Paper (I) Time Allowed: - 20 minutes **PAPER CODE 2481** Maximum Marks:- 17 Note:- You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that question number. Use marker or pen to fill the circles, Cutting or filling two or more circles will result in zero mark in that question. Write PAPER CODE, which is printed on this question paper, on the both sides of the Answer Sheet and fill bubbles accordingly, otherwise the student will be responsible for the situation. Use of Ink Remover or white correcting fluid is not allowed. **O**. 1 1) The volume occupied by 1.4 g of N_2 at S.T.P. is (C) 22.4 dm^3 (A) 1.12 dm^3 (B) 2.24 dm^3 (D) 112 cm³ 2) Which of the following is a monoisotopic element. (A) Silver (B) Calcium (C) Chlorine (D) Fluorine 3) Which of the following can be sublime. (A) Calcium (B) NaCl (C) Naphthalene (D) Na_2CO_3 4) Constant factor in charlie's law. (A) Volume (B) Pressure (C) Tempreture (D) Both V and T 5) The order of rate of diffusion of gases NH₃, SO₂, Cl₂ and CO₂ is (A) NH₃>CO₂>SO₂>Cl₂ (B) NH₃>SO₂>Cl₂>CO₂ (C) Cl₂>SO₂>CO₂>NH₃ (D) NH₃>CO₂>Cl₂>SO₂ 6) Which of the following is amorphous solid (A) NaCl (B) Glass (C) NaBr (D) CaF₂ 7) Which of the following has highest vapour pressure at 25°C. (A) Mercury (B) Ethanol (C) $CC\ell_4$ (D) Chloroform 8) When 6d orbital is complete the entering electron goes into (A) 7f (B) 7s (D) 7p 9) Number of bonds in nitrogen molecule is (B) Three sigma (C) Two sigma and one π (D) One σ and Two π (A) One σ and one π 10) Units of energy in which heat changes in S.I system are. (A) Joule (B) Torr (C) Erg (D) Newton 11) The net heat change in a chemical reaction is same weather the reaction completes in one step or several steps. It is known as (A) Henry's law (B) Joule's principle (C) Hesse's law (D) Law of conservation of energy 12) Mixture of NH₄OH and NH₄Cl makes a buffer whose pH is (A) less than seven (B) 7 (C) More than seven (D) 4 13) For the reaction $N_2+3H_2 \rightleftharpoons 2NH_3$, The pressure at optimum condition is. (A) 100 atm (B) 600 atm (C) 200-300 atm (D) 1000 atm 14) Molarity of pure water is. (A) 01(B) 55.5 (C) 18(D) 8 15) If a strip of Cu metal is placed in a solution of FeSO₄ (B) Fe is precipitated out (C) Cu and Fe both (A) Cu will be (D) No reaction takes deposited dissolved place 16) Oxidation number of Mn in KMnO₄ is (A) +5(B) + 7(D) +217) The unit of rate constant is the same as that of the rate of reaction in (A) First order reaction (B) Second order (C) Zero order reaction (D) Third order

1123 - 1123 - 18000 (1)

reaction

Themistry (Objective) (Group-II) Paper (I) Time Allowed:- 20 minutes PAPER CODE 248B Maximum Marks:- 17 oter- You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fix at circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will tin zero mark in that question. Write PAPER CODE, which is printed on this question paper, on the both sides of th saver Sheet and fill bubbles accordingly, otherwise the student will be responsible for the situation. Use of Ink Remover of the correcting fluid is not allowed. $(7D) - II - III -$	7L	(Inter Part – I)	(Session 2019-21 to	, 0	rudent
ote: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, if a circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles wist in zero mark in that question. Write PAPER CODE, which is printed on this question paper, on the both sides of the suit in zero mark in that question. Write PAPER CODE, which is printed on this question paper, on the both sides of the suit in zero mark in that question. Write PAPER CODE, which is printed on this question paper, on the both sides of the suit in zero mark in that question. Write PAPER CODE, which is printed on this question paper, on the both sides of the suit in zero mark in that question. Write PAPER CODE, which is printed on this question paper, on the both sides of the suit in zero mark in that question. Write PAPER CODE, which is printed on this question paper, on the both sides of the suit in zero mark in that question. Write PAPER CODE, which is printed on this question paper, on the both sides of the suit in zero mark in the paper. The suit is suit to fill the circles. Cutting or fill the circ				_	
at circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles of this ways in azero mark in that question. Write PAPER CODE, which is printed on this question paper, on the both sides of this ways. Which is printed on this question paper, on the both sides of this ways. Which is printed on this question paper, on the both sides of this ways. Which is printed on this question paper, on the both sides of this ways. Which is printed on this question. Use of lnk Remover of the correcting fluid is not allowed. SQ1 P1 - $\sqrt{2-1}$ Q. 1 1) Which of the following has hydrogen bonding? (A) CH4 (B) $CC\ell_4$ (C) NH3 (D) SiH4 2) The electron affinity of chlorine is. (A) $-349 \text{ k/l mol}^{-1}$ (B) $-249 \text{ k/l mol}^{-1}$ (C) $-449 \text{ k/l mol}^{-1}$ (D) $+396 \text{ k/l mol}^{-1}$ 3) Acid having $K_a > 1$ will be . (A) Weak (B) Very weak (C) Moderate (D) Strong 4) 18 g glucose is dissolved in 90 g of water. The relative lowering of vapour pressure is equal to (A) $1/5$ (B) -310 k/s^{-1} (D) -310 k/s^{-1} (C) $-249 \text{ k/l mol}^{-1}$ (D) -310 k/s^{-1} (D)					
sult in zero mark in that question. Write PAPER CODE, which is printed on this question paper, on the both sides of this were Sheet and fill bubbles accordingly, otherwise the student will be responsible for the situation. Use of lank Remover of the correcting fluid is not allowed.	ote:- at circ	the in front of that question r	number. Use marker or pen to	of fill the circles. Cutting or	filling two or more circles will
ite correcting fluid is not allowed. $S(J_1D-II-C_1Z_2-P_1Z_2)$ Q. 1 1) Which of the following has hydrogen bonding? (A) CH ₄ (B) $CC\ell_4$ (C) NH ₃ (D) SiH ₄ 2) The electron affinity of chlorine is. (A) -349 kJ mol^{-1} (B) -249 kJ mol^{-1} (C) -449 kJ mol^{-1} (D) +396 kJ mol^{-1} 3) Acid having $K_a > 1$ will be. (A) Weak (B) Very weak (C) Moderate (D) Strong 4 18 g glucose is dissolved in 90 g of water. The relative lowering of vapour pressure is equal to (A) $1/5$ (B) 5.1 (C) $1/51$ (D) 6 5) Orbitals having same energy are called: (A) unhybrid orbitals (B) valence orbitals (C) degenerate orbitals (D) d-orbitals (A) 1.12 dm ³ (B) 2.24 dm ³ (C) 22.41 dm ³ (D) 112 dm ³ 7) Partial pressure of oxygen in air at sea level is. (A) 149 torr (B) 154 forr (C) 159 torr (D) 164 torr (D) 165 torr (D) 164 torr (D) 165 torr (D) 165 torr (D) 164 torr (D) 165 torr (D) 164 torr (D) 165 torr (D) 165 torr (D) 164 torr (D) 165 torr (D) 164 torr (D) 165 tor	ult in	zero mark in that question.	Write PAPER CODE, which	is printed on this question	paper, on the both sides of the
1) Which of the following has hydrogen bonding? (A) CH4 (B) $CC\ell_4$ (C) NH3 (D) SiH4 2) The electron affinity of chlorine is. (A) -349 kl mol^{-1} (B) -249 kl mol^{-1} (C) -449 kl mol^{-1} (D) +396 kl mol^{-1} 3) Acid having $K_a > 1$ will be. (A) Weak (B) Very weak (C) Moderate (D) Strong 4) 18 g glucose is dissolved in 90 g of water. The relative lowering of vapour pressure is equal to (A) $1/5$ (D) 6 5) Orbitals having same energy are called: (A) unhybrid orbitals (B) valence orbitals (C) degenerate orbitals (D) d-orbitals 6) The volume of 1.6g of CH_4 at S.T.P is (A) 1.12 dm³ (B) 2.24 dm³ (C) 22.41 dm³ (D) 112 dm³ 7) Partial pressure of oxygen in air at sea level is. (A) 149 torr (B) 154 forr (C) 159 torr (D) 164 torr 8) In silver oxide battery, the cathode is made up of: (A) AgO (B) Ag_2O (C) Ag_2O_3 (D) Ag 9) For the reaction $AgOH + HCI \rightarrow NaCI + H_2O$ the change in enthalpy is called: (A) oxidation potential (B) reduction potential (B) reduction potential (C) redox potential (D) E.M.F of cell (C) redox potential (D) E.M.F of cell (C) remains the same as the reaction proceeds 12) The largest number of molecules are present in: (A) 3.6 g of H_2O (B) 4.8 g of C_2H_3OH (C) 2.8 g of CO (D) 5.4 g of N_2O_5 (D) and value of thermally unstable 14) The order of the rate of diffusion of gases NH ₃ , SO ₂ , Cl ₂ and CO ₂ is: (A) NH ₃ SO ₂ >Cl ₂ >Cl ₂ >CO ₂ (B) NH ₃ >CO ₂ >SO ₂ >Cl ₂ (C) Cl ₂ >SO ₂ >CO ₂ >NH ₃ (D) NH ₃ >CO ₂ >Cl ₂ >Cl ₂ (A) NH ₃ >CO ₃ (B) CHCl ₃ (C) H ₂ O (D) BF ₃ (A) NH ₃ (B) 2.7 (C) 2.0 (D) 1.5			dingly, otherwise the student v	vill be responsible for the si	
(A) CH ₄ (B) $CC\ell_4$ (C) NH ₃ (D) SiH ₄ 2) The electron affinity of chlorine is. (A) -349 kJ mol ⁻¹ (B) -249 kJ mol ⁻¹ (C) -449 kJ mol ⁻¹ (D) +396 kJ mol ⁻¹ 3) Acid having $K_a > 1$ will be. (A) Weak (B) Very weak (C) Moderate (D) Strong (A) 18 g glucose is dissolved in 90 g of water. The relative lowering of vapour pressure is equal to (A) $1/_5$ (B) 5.1 (C) $1/_51$ (D) 6 5) Orbitals having same energy are called: (A) unhybrid orbitals (B) valence orbitals (T) (C) $1/_51$ (D) 6 5) Orbitals having same energy are called: (A) unhybrid orbitals (B) valence orbitals (C) degenerate orbitals (D) d-orbitals (D) d-orbitals (D) 1.12 dm ³ (D) 1.15 dm ³ (D) 1.12 dm ³			5670-11-6	12-P1	Q. 1
2) The electron affinity of chlorine is. (A) -349 kJ mol ⁻¹ (B) -249 kJ mol ⁻¹ (C) -449 kJ mol ⁻¹ (D) +396 kJ mol ⁻¹ 3) Acid having K _a > 1 will be (A) Weak (B) Very weak (C) Moderate (D) Strong (D) Strong (A) 1/5 (D) 6 4) 18 g glucose is dissolved in 90 g of water. The relative lowering of vapour pressure is equal to (A) 1/5 (D) 6 5) Orbitals having same energy are called: (A) unhybrid orbitals (B) valence orbitals (C) degenerate orbitals (D) d-orbitals (B) L12 dm ³ (D) 112 dm ³ 7) Partial pressure of oxygen in air at sea level is. (A) 1.12 dm ³ (B) 2.24 dm ³ (C) 22.41 dm ³ (D) 112 dm ³ 7) Partial pressure of oxygen in air at sea level is. (A) 149 torr (B) 154 forr (C) 159 torr (D) 164 torr (1)	better the comment and the com	and the same of th	(C) NII	(D) SiH
(A) -349 kJ mol ⁻¹ (B) -249 kJ mol ⁻¹ (C) -449 kJ mol ⁻¹ (D) +396 kJ mol ⁻¹ 3) Acid having K _a > 1 will be . (A) Weak (B) Very weak (C) Moderate (D) Strong (D) 18 g glucose is dissolved in 90 g of water. The relative lowering of vapour pressure is equal to (A) 1/ ₅ (B) 5.1 (C) 1/ ₅₁ (D) 6 5) Orbitals having same energy are called: (A) unhybrid orbitals (B) valence orbitals (C) degenerate orbitals (D) d-orbitals (D) d-orbitals (D) d-orbitals (D) d-orbitals (D) 1.12 dm ³ (D) 1.13 dm ³ (D) 1.14 dm ³ (D) 1.15 dorr (D) 1.64 torr (D) 1.64	2)			(C) NH ₃	(D) 3111 ₄
3) Acid having $K_a > 1$ will be . (A) Weak (B) Very weak (C) Moderate (D) Strong 4 18 g glucose is dissolved in 90 g of water. The relative lowering of vapour pressure is equal to (A) $1/5$ (B) 5.1 (C) $1/51$ (D) 6 5 Orbitals having same energy are called: (A) unhybrid orbitals (B) valence orbitals (C) degenerate orbitals (D) d-orbitals (B) Valence orbitals (C) degenerate orbitals (D) d-orbitals (C) d-orbitals (D) d-orbitals (D-orbitals (D-orbitals (D-orbitals (D-orbitals ((C) 140 k/mol^{-1}	(D) $\pm 206 \ kl \ mol^{-1}$
(A) Weak (B) Very weak (C) Moderate (D) Strong 4) 18 g glucose is dissolved in 90 g of water. The relative lowering of vapour pressure is equal to (A) $1/5$ (B) 5.1 (C) $1/51$ (D) 6 5) Orbitals having same energy are called: (A) unhybrid orbitals (B) valence orbitals (C) degenerate orbitals (D) d-orbitals (E) degenerate orbitals (D) d-orbitals (D)		- 14	-	(C) -449 KJ MOI	(D) +390 kJ moi
4) 18 g glucose is dissolved in 90 g of water. The relative lowering of vapour pressure is equal to (A) 1/ ₅ (B) 5.1 (C) 1/ ₅₁ (D) 6 5) Orbitals having same energy are called: (A) unhybrid orbitals (B) valence orbitals (C) degenerate orbitals (D) d-orbitals (A) 1.12 dm³ (B) 2.24 dm³ (C) 22.41 dm³ (D) 112 dm³ 7) Partial pressure of oxygen in air at sea level is. (A) 149 torr (B) 154 forr (C) 159 torr (D) 164 torr 8) In silver oxide battery, the cathode is made up of. (A) AgO (B) Ag₂O (C) Ag₂O₃ (D) Ag 9) For the reaction NaOH + HCl → NaCl + H₂O the change in enthalpy is called: (A) AgO (B) Heat of formation (A) Heat of reaction. (A) Heat of reaction. (A) increases as the reaction proceeds (A) oxidation potential (B) decreases as the reaction proceeds (A) 3.6 g of H₂O (B) 4.8 g of C₂H₅OH (C) 2.8 g of CO (D) 5.4 g of N₂O₅ 12) The largest number of molecules are present in: (A) on-volatile or thermally unstable (A) non-volatile or thermally unstable (A) NH₃-SO₂>Cl₂>Cl₂>Cl₂>Cl₂>Cl₂>Cl₂>Cl₂>Cl₂>Cl₂>Cl	3)			(C) Madarata	(D) Strong
(A) 1/ ₅ (B) 5.1 (C) 1/ ₅₁ (D) 6 5) Orbitals having same energy are called: (A) unhybrid orbitals (B) valence orbitals (C) degenerate orbitals (D) d-orbitals (D) d-orbitals (E) degenerate orbitals (D) d-orbitals (C) degenerate orbitals (D) d-orbitals (D) degenerate orbitals (D) d-orbitals (C) degenerate orbitals (D) d-orbitals (D) degenerate orbitals (D) d-orbitals (C) degenerate orbitals (C) degenerate	4)	` '			
 (A) unhybrid orbitals (B) valence orbitals (C) degenerate orbitals (D) d-orbitals (A) unhybrid orbitals (B) valence orbitals (C) degenerate orbitals (D) d-orbitals (D) The volume of 1.6g of CH₄ at S.T.P is (A) 1.12 dm³ (B) 2.24 dm³ (C) 22.41 dm³ (D) 112 dm³ (A) 149 torr (B) 154 forr (C) 159 torr (D) 164 torr	•)		the state of the s	(C) 1/	
(A) unhybrid orbitals (B) valence orbitals (C) degenerate orbitals (D) d-orbitals (A) 1.12 dm³ (B) 2.24 dm³ (C) 22.41 dm³ (D) 112 dm³ (D) 112 dm³ (E) 2.24 dm³ (E) 22.41 dm³ (D) 164 torr (D) 4 degreerate orbitals (E) 44 torr (E) 46 torr (E) 48 torr (E) 48 torr (C) 7edox potential (D) 8 my 4 decrease or increase as the reaction proceeds (C) remains the same as the reaction proceeds (C) remains the same as the reaction proceeds (C) 2.8 g of CO (D) 5.4 g of N ₂ O ₂ O ₂ O ₂ O	= \	3		751	(~) •
6) The volume of 1.6g of CH ₄ at S.T.P is (A) 1.12 dm³ (B) 2.24 dm³ (C) 22.41 dm³ (D) 112 dm³ 7) Partial pressure of oxygen in air at sea level is. (A) 149 torr (B) 154 forr (C) 159 torr (D) 164 torr 8) In silver oxide battery, the cathode is made up of: (A) AgO (B) Ag₂O (C) Ag₂O₃ (D) Ag 9) For the reaction NaOH + HCl → NaCl + H₂O the change in enthalpy is called: (A) Heat of reaction (B) Heat of formation (A) Heat of reaction (B) Heat of formation (A) increases as the reaction proceeds 11) The rate of reaction (B) decreases as the reaction proceeds 12) The largest number of molecules are present in: (A) 3.6 g of H₂O (B) 4.8 g of C₂H₃OH (C) 2.8 g of CO (D) 5.4 g of N₂O₅ (A) non-volatile or thermally unstable (B) volatile or thermally unstable (A) NH₃>SO₂>Cl₂>CO₂ (B) NH₃>CO₂>SO₂>Cl₂ (C) Cl₂>SO₂>CO₂>NH₃ (D) NH₃>CO₂>Cl₂>CO₂ (B) NH₃>CO₂>SO₂>Cl₂ (C) Cl₂>SO₂>CO₂>NH₃ (D) NH₃>CO₂>Cl₂>CO₂ (D) Ag (C) 2.8 g of CO (D) 5.4 g of N₂O₅ (C) 2.8 g of CO (D) 5.4 g of N₂O₅ (D) wolatile or thermally unstable (D) wolatile or thermally unstable (D) volatile or thermally stable (D) volatile or thermally stable (D) wolatile or thermally stable (D) any value of pressure and 1200 torr (B) between 200 torr and 1200 torr (B) between 200 torr and 760 torr (B) C) C) (C) (C) (D) (D) (D) (D) (D) (D) (D) (D) (D) (D	5)			(C) 1	- (D) 1 - 14 1
(A) 1.12 dm³ (B) 2.24 dm³ (C) 22.41 dm³ (D) 112 dm³ 7) Partial pressure of oxygen in air at sea level is. (A) 149 torr (B) 154 torr (C) 159 torr (D) 164 torr 8) In silver oxide battery, the cathode is made up of: (A) AgO (B) Ag₂O (C) Ag₂O₃ (D) Ag 9) For the reaction NaOH + HCl → NaCl + H₂O the change in enthalpy is called: (A) Heat of reaction (B) Heat of formation (C) Heat of neutralization (D) Heat of combuton (A) example of the exidizing agent, greater is the: (A) oxidation potential (B) reduction potential 11) The rate of reaction. (A) increases as the reaction proceeds 12) The largest number of molecules are present in: (A) 3.6 g of H₂O (B) 4.8 g of C₂H₃OH (C) 2.8 g of CO (D) 5.4 g of N₂O₂ thermally unstable 13) Solvent extraction method is a particularly useful technique for separation when the product to be separated is. (A) NH₃>SO₂>Cl₂>CO₂ (B) NH₃>CO₂>SO₂>Cl₂ (C) Cl₂>SO₂>CO₂>NH₃ (D) NH₃>CO₂>Cl₂>(C) Cl₂>SO₂>CO₂>NH₃ (D) NH₃>CO₂>Cl₂>(C) Cl₂>SO₂>CO₂>NH₃ (D) NH₃>CO₂>Cl₂>(D) and 760 torr and 1200 torr and 760 torr and 760 torr and 760 torr and 1200 torr and 760 torr and 1200 torr and 760 torr and	0			(C) degenerate orbital	s (D) d-orbitals
7) Partial pressure of oxygen in air at sea level is. (A) 149 torr (B) 154 torr (C) 159 torr (D) 164 torr 8) In silver oxide battery, the cathode is made up of: (A) AgO (B) Ag₂O (C) Ag₂O₃ (D) Ag 9) For the reaction NaOH + HCl → NaCl + H₂O the change in enthalpy is called: (A) Heat of reaction (B) Heat of formation (C) Heat of neutralization (D) Heat of combut (C) redox potential (C) redox potential (D) E.M.F of cell (C) redox potential (D) may decrease or increase as the reaction proceeds (C) remains the same as the reaction proceeds (D) may decrease or increase as the reaction proceeds (E) volatile or thermally stable thermally stable thermally stable thermally stable thermally stable (A) non-volatile or thermally stable thermally stable (A) NH₃ SO₂>Cl₂>CO₂>SO₂>Cl₂ (C) Cl₂>SO₂>CO₂>NH₃ (D) NH₃>CO₂>Cl₂>Cl₂>Cl₂>CO₂>NH₃ (D) NH₃>CO₂>Cl₂>Cl₂>Cl₂>Cl₂>Cl₂>Cl₂>Cl₂>Cl₂>Cl₂>Cl	6)			(0) 22 41 1 3	(D) 112 1 3
(A) 149 torr (B) 154 torr (C) 159 torr (D) 164 torr 8) In silver oxide battery, the cathode is made up of: (A) AgO (B) Ag₂O (C) Ag₂O₃ (D) Ag 9) For the reaction NaOH + HCl → NaCl + H₂O the change in enthalpy is called: (A) Heat of reaction (B) Heat of formation (C) Heat of neutralization (D) Heat of combutation (A) Heat of reaction (B) reduction potential (C) redox potential (D) E.M.F of cell 11) The rate of reaction. (A) increases as the reaction proceeds (B) decreases as the reaction proceeds (A) 3.6 g of H₂O (B) 4.8 g of C₂H₃OH (C) 2.8 g of CO (D) 5.4 g of N₂O₂ (D) 5.4 g of	77)	` '		(C) 22.41 dm	(D) 112 dm
 8) In silver oxide battery, the cathode is made up of: (A) AgO (B) Ag₂O (C) Ag₂O₃ (D) Ag 9) For the reaction NaOH + HCl → NaCl + H₂O the change in enthalpy is called: (A) Heat of reaction (B) Heat of formation (C) Heat of neutralization (D) Heat of combutation (C) Heat of neutralization (D) Heat of combutation (D) Heat of combutation (D) E.M.F of cell (E) Tredox potential (E) Tredox potential (D) E.M.F of cell (C) remains the same as the reaction proceeds (C) remains the same as the reaction proceeds (C) 2.8 g of CO (D) 5.4 g of N₂O₅ (E) 4.8 g of C₂H₃OH (A) non-volatile or thermally unstable stable (D) volatile or thermally stable thermally stable (C) non-volatile or thermally stable (D) volatile or thermally unstable (D) volatile or thermally unstable (D) volatile or thermally stable (D) volatile or thermally stable (D) volatile or thermally unstable (D) volatile or thermally (D) volatile or thermally unstable (D) volatile or thermally (D) volatile or thermally unstable (D) volatile or thermally (D)	1)			(C) 150 tom	(D) 1(1)
(A) AgO (B) Ag₂0 (C) Ag₂0₃ (D) Ag 9) For the reaction NaOH + HCl → NaCl + H₂0 the change in enthalpy is called: (A) Heat of reaction (B) Heat of formation (C) Heat of neutralization (D) Heat of combut (C) redox potential (D) E.M.F of cell (E) reaction proceeds (C) remains the same as the reaction proceeds (C) remains the same as the reaction proceeds (E) The largest number of molecules are present in: (A) 3.6 g of H₂O (B) 4.8 g of C₂H₃OH (C) 2.8 g of CO (D) 5.4 g of N₂O₂ (D) volatile or thermally unstable (C) remains the same as the reaction proceeds (C) remains the same as the reaction proceeds (C) 2.8 g of CO (D) 5.4 g of N₂O₂ (D) volatile or thermally unstable (C) remains the same as the reaction proceeds (C) 2.8 g of CO (D) 5.4 g of N₂O₂ (D) volatile or thermally unstable (C) non-volatile or thermally stable unstable (C) non-volatile or thermally stable thermally stable thermally stable thermally stable thermally stable (C)	8)				(D) 104 torr
9) For the reaction NaOH + HCl → NaCl + H₂O the change in enthalpy is called: (A) Heat of reaction (B) Heat of formation (C) Heat of neutralization (D) Heat of combut (D) Stronger the oxidizing agent, greater is the: (A) oxidation potential (B) reduction potential (C) redox potential (D) E.M.F of cell 11) The rate of reaction. (A) increases as the reaction proceeds reaction proceeds 12) The largest number of molecules are present in: (A) 3.6 g of H₂O (B) 4.8 g of C₂H₂OH (C) 2.8 g of CO (D) 5.4 g of N₂O₂ (D) solvent extraction method is a particularly useful technique for separation when the product to be separated is. (A) non-volatile or thermally unstable (B) volatile or thermally unstable (C) non-volatile or thermally stable (D) NH₃>SO₂>Cl₂>CO₂ (B) NH₃>CO₂>SO₂>Cl₂ (C) Cl₂>SO₂>CO₂>NH₃ (D) NH₃>CO₂>Cl₂>CO₂ (D) Solvent extraction mode of the rate of diffusion of gases NH₃, SO₂, Cl₂ and CO₂ is: (A) NH₃>SO₂>Cl₂>CO₂ (B) NH₃>CO₂>SO₂>Cl₂ (C) Cl₂>SO₂>CO₂>NH₃ (D) NH₃>CO₂>Cl₂>Cl₂>Cl₂ (C) Cl₂>SO₂>CO₂>NH₃ (D) NH₃>CO₂>Cl₂>Cl₂>Cl₂>Cl₂>Cl₂>Cl₂>Cl₂>Cl₂>Cl₂>Cl	9		-		(D) A a
(A) Heat of reaction (B) Heat of reaction (C) redox potential (D) E.M.F of cell (A) oxidation potential (B) reduction potential (C) redox potential (D) E.M.F of cell (E) may decrease or increase as the reaction proceeds (C) remains the same as the reaction proceeds (D) may decrease or increase as the reaction proceeds (E) may decrease or increase as the reaction proceeds (E) decreases as the reaction proceeds (C) remains the same as the reaction proceeds (D) may decrease or increase as the reaction proceeds (E) may decrease or increase as the reaction proceeds (E) volatile or increase as the reaction proceeds (E) volatile or thermally descrease or increase as the reaction proceeds (E) volatile or thermally frame increase as the reaction proceeds (E) volatile or thermally stable (E) volatile or thermally stable or thermally or thermally stable or thermally or thermall		(A) Ago	(D) Ag ₂ U	$(C) Ay_2 O_3$	(D) Ag
(A) Heat of reaction (B) Reat of Normaton (C) Tredox potential (D) E.M.F of cell (A) oxidation potential (B) reduction potential (C) Tredox potential (D) E.M.F of cell (E) Reaction proceeds (C) Tredox potential (D) E.M.F of cell (E) Reaction proceeds (D) May decrease or increase as the reaction proceeds (E) May decrease or increase as the reaction proceeds (E) Reaction proceeds (C) Tredox potential (D) E.M.F of cell (D) E.M.F of cell (E) Reaction proceeds (D) May decrease or increase as the reaction proceeds (E) May decrease or increase as the reaction proceeds (E) Reaction proceeds (E) Reaction proceeds (C) Tredox potential (D) E.M.F of cell (D) May decrease or increase as the reaction proceeds (E) May decrease or increase as the reaction proceeds (E) Reaction proceeds (E) Reaction proceeds (D) Stronger the oxidizing agent, greater is the: (C) Tredox potential (D) E.M.F of cell (D) May decrease or increase as the reaction proceeds (E) Reaction proceeds (D) Stronger the oxidizing agent, greater is the: (C) Tredox potential (D) May decrease or increase as the reaction proceeds (E) Reaction proceeds (D) Stronger the oxidizing agent, greater is the: (C) Tredox potential (D) May decrease or increase as the reaction proceeds (E) Reaction proceeds (D) Stronger the value of increase as the reaction proceeds (E) Reaction proceeds (E) Reaction proceeds (D) Stronger the value of increase as the reaction proceeds (E) Reaction proceeds (E) Reaction proceeds (D) Stronger the value of increase as the reaction proceeds (E) Reaction proceeds (E) Reaction proceeds (D) Stronger the value of increase as the reaction proceeds (E) Reaction proceeds (E) Reaction proceeds (D) Reaction proceeds (E) Reaction pr			9/4	. 1 anthology	is called:
(A) Heat of reaction (B) Read of Normaton (C) Tredox potential (D) E.M.F of cell (A) oxidation potential (B) reduction potential (C) Tredox potential (D) E.M.F of cell (E) May decrease or increase as the reaction proceeds (C) Tredox potential (D) E.M.F of cell (E) E.M.F of cell (D) E.M.F of cell (E) E.M.F of cell (C) Tredox potential (D) E.M.F of cell (E) E.M.F of cell (E) E.M.F of cell (E) E.M.F of cell (D) E.M.F of cell (E) E.M.F of cell (E) E.M.F of cell (E) E.M.F of cell (D) E.M.F of cell (E) E.M.F of cell (E) E.M.F of cell (D) E.M.F of cell (E) E.M.F of cell (E) E.M.F of cell (D) May decrease or increase as the reaction proceeds (E) E.M.F of cell (D) May of the reaction proceeds (E) E.M.F of cell (D) May of the reaction proceeds (E) E.M.F of cell (D) May of the reaction proceeds (E) E.M.F of cell (D) May of the reaction proceeds (E) E.M.F of cell (D) May of the reaction proceeds (E) E.M.F of cell (D) May of the reaction proceeds (E) E.M.F of cell (D) May of the reaction proceeds (E) E.M.F of cell (D) May of the reaction proceeds (E) E.M.F of the reaction proceeds (E	97	For the reaction NaOH	$I + HCl \rightarrow NaCl + H_2O$	the change in chinalpy	ion (D) Heat of combust
10) Stronger the oxidizing agent, greater is the: (A) oxidation potential (B) reduction potential (C) redox potential (D) E.M.F of cell 11) The rate of reaction. (A) increases as the reaction proceeds (B) decreases as the reaction proceeds (C) remains the same as the reaction proceeds 12) The largest number of molecules are present in: (A) 3.6 g of H ₂ O (B) 4.8 g of C ₂ H ₅ OH (C) 2.8 g of CO (D) 5.4 g of N ₂ O ₅ (D) volatile or increase as the reaction proceeds 13) Solvent extraction method is a particularly useful technique for separation when the product to be separated is. (A) non-volatile or thermally unstable (B) volatile or thermally (C) non-volatile or thermally stable stable (A) NH ₃ >SO ₂ >Cl ₂ >CO ₂ (B) NH ₃ >CO ₂ >SO ₂ >Cl ₂ (C) Cl ₂ >SO ₂ >CO ₂ >NH ₃ (D) NH ₃ >CO ₂ >Cl ₂ >Cl ₂ (A) NH ₃ >SO ₂ >Cl ₂ >CO ₂ (B) NH ₃ >CO ₂ >SO ₂ >Cl ₂ (C) Cl ₂ >SO ₂ >CO ₂ >NH ₃ (D) NH ₃ >CO ₂ >Cl ₂ >Cl ₂ (C) Test or and 1200 torr and 760 torr and 760 torr and 760 torr (B) between 200 torr and 760 torr and 760 torr (B) CHCl ₃ (C) H ₂ O (C) 2.0 (D) 1.5		(A) Heat of reaction	(D) Theat of formation	(C) Heat of neutralization	(2)
(A) oxidation potential (B) reduction potential (C) remains the same as the reaction proceeds (D) may decrease or increase as the reaction proceeds (D) may decrease or increase as the reaction proceeds (E) decreases as the reaction proceeds (E) remains the same as the reaction proceeds (D) substituted to the specific proceeds (E) remains the same as the reaction proceeds (E) remains the same as the reaction proceeds (E) remains the same as the reaction proceeds (D) substituted to the specific proceeds (E) remains the same as the reaction proceeds (E) remains the same as the reaction proceeds (E) remains the same as	10)	Owencer the ovidizing a	gent, greater is the:		
11) The rate of reaction. (A) increases as the reaction proceeds (B) decreases as the reaction proceeds (C) remains the same as the reaction proceeds 12) The largest number of molecules are present in: (A) 3.6 g of H ₂ O (B) 4.8 g of C ₂ H ₅ OH (C) 2.8 g of CO (D) 5.4 g of N ₂ O ₅ (D) volatile or reaction proceeds 13) Solvent extraction method is a particularly useful technique for separation when the product to be separated is. (A) non-volatile or (B) volatile or thermally unstable 14) The order of the rate of diffusion of gases NH ₃ , SO ₂ , Cl ₂ and CO ₂ is: (A) NH ₃ >SO ₂ >Cl ₂ >CO ₂ (B) NH ₃ >CO ₂ >SO ₂ >Cl ₂ (C) Cl ₂ >SO ₂ >CO ₂ >NH ₃ (D) NH ₃ >CO ₂ >Cl ₂ >Cl ₂ (C) the external pressure should be (A) between 760 torr and 1200 torr (B) between 200 torr and 760 torr (B) CHCl ₃ (C) H ₂ O (C) H ₂ O (D) any value of pressure	10,	(A) oxidation potential	(B) reduction potential	(C) redox potential	(2)
(A) increases as the reaction proceeds reaction proceeds reaction proceeds 12) The largest number of molecules are present in: (A) 3.6 g of H ₂ O (B) 4.8 g of C ₂ H ₅ OH (C) 2.8 g of CO (D) 5.4 g of N ₂ O ₅ (A) 3.6 g of H ₂ O (B) 4.8 g of C ₂ H ₅ OH (C) 2.8 g of CO (D) volatile or the reaction proceeds 13) Solvent extraction method is a particularly useful technique for separation when the product to be separated is. (A) non-volatile or thermally unstable stable thermally stable thermally unstable 14) The order of the rate of diffusion of gases NH ₃ , SO ₂ , Cl ₂ and CO ₂ is: (A) NH ₃ >SO ₂ >Cl ₂ >CO ₂ (B) NH ₃ >CO ₂ >SO ₂ >CO ₂ >Cl ₂ (C) Cl ₂ >SO ₂ >CO ₂ >NH ₃ (D) NH ₃ >CO ₂ >Cl ₂ >Cl ₂ (C) Cl ₂ >SO ₂ >CO ₂ >NH ₃ (D) any value of pressure and 1200 torr (B) between 200 torr (C) 765 torr (D) any value of pressure (A) NH ₃ (B) CHCl ₃ (C) H ₂ O (D) BF ₃ (A) NH ₃ (B) CHCl ₃ (C) H ₂ O (D) BF ₃ (D) 1.5	11	The rate of reaction.		(C) remains the same	(D) may decrease or
reaction proceeds 12) The largest number of molecules are present in: (A) 3.6 g of H ₂ O (B) 4.8 g of C ₂ H ₅ OH (C) 2.8 g of CO (D) 5.4 g of N ₂ O ₅ (A) 3.6 g of H ₂ O (B) 4.8 g of C ₂ H ₅ OH (C) 2.8 g of CO (D) 5.4 g of N ₂ O ₅ (E) 5.4 g of N ₂ O ₅ (D) 5.4 g of N ₂ O ₅ (E) 5.4 g of N ₂ O ₅ (D) 5.4 g of N ₂ O ₅ (E) 5.4 g of N ₂ O ₅ (D) 5.4 g of N ₂ O ₅ (E) 5.4 g of N ₂ O ₅ (D) 4.2 g of N ₂ O ₅ (E) 5.4 g of N ₂ O ₅ (D) 4.2 g of N ₂ O ₅ (E) 5.4 g of N ₂ O ₅ (D) 4.2 g of N ₂ O ₅ (E) 5.4 g of N ₂ O ₅ (D) 4.2 g of N ₂ O ₅ (E) 5.4 g of N ₂ O ₅ (D) 4.2 g of N ₂ O ₅ (E) 5.4 g of N ₂ O ₅ (D) 4.2 g of N ₂ O ₅ (E) 5.4 g of N ₂ O ₅ (D) 4.2 g of N ₂ O ₅ (E) 5.4 g of N ₂ O ₅ (D) 4.3 g of N ₂ O ₅ (E) 5.4 g of N ₂ O ₅ (D) 8.4 g of N ₂ O ₅ (E) 6.4 g of N ₂ O ₅ (D) 8.4 g of N ₂ O ₅ (E) 6.4 g of N ₂ O ₅ (D) 8.4 g of N ₂ O ₅ (E) 6.4 g of N ₂ O ₅ (D) 8.4 g of N ₂ O ₅ (E) 6.4 g of N ₂ O ₅ (D) 8.4 g of N ₂ O ₅ (E) 6.4 g of N ₂ O ₅ (D) 8.4 g of N ₂ O ₅ (E) 6.4 g of N ₂ O ₅ (D) 8.4 g of N ₂ O ₅ (E) 6.4 g of N ₂ O ₅ (D) 8.4 g of N ₂ O ₅ (E) 6.4 g of N ₂ O ₅ (D) 8.4 g of N ₂ O ₅ (E) 6.4 g of N ₂ O ₅ (E) 6.4 g of N ₂ O ₅ (D) 8.4 g of N ₂ O ₅ (E) 6.4 g of N ₂ O ₅ (D) 8.4 g of N ₂ O ₅ (E) 6.4 g of N ₂ O ₅ (E) 6.4 g of N ₂ O ₅ (D) 8.4 g of N ₂ O ₅ (E) 6.4 g of N ₂ O ₅ (E) 6.4 g of N ₂ O ₅ (E) 6.4 g of N ₂ O ₅ (D) 8.4 g of N ₂ O ₅ (E) 6.4 g of N ₂ O ₅ (D) 8.4 g of N ₂ O ₅ (E) 6.4 g of N ₂ O ₅ (D) 8.4 g of N ₂ O ₅ (D) 9.4 g		(A) increases as the	(B) decreases as the	as the reaction	increase as the
12) The largest number of molecules are present in: (A) 3.6 g of H ₂ O (B) 4.8 g of C ₂ H ₅ OH (C) 2.8 g of CO (D) 5.4 g of N ₂ O ₅ (A) 3.6 g of H ₂ O (B) 4.8 g of C ₂ H ₅ OH (C) 2.8 g of CO (D) 5.4 g of N ₂ O ₅ (E) 2.8 g of CO (D) 5.4 g of N ₂ O ₅ (E) 2.8 g of CO (D) 5.4 g of N ₂ O ₅ (E) 2.8 g of CO (D) 5.4 g of N ₂ O ₅ (E) 2.8 g of CO (D) 5.4 g of N ₂ O ₅ (E) 2.8 g of CO (D) 5.4 g of N ₂ O ₅ (E) 2.8 g of CO (D) 5.4 g of N ₂ O ₅ (E) 2.8 g of CO (D) 5.4 g of N ₂ O ₅ (E) 2.8 g of CO (D) 3.4 g of N ₂ O ₅ (D) 4.8 g of N ₂ O ₅ (E) 2.8 g of CO (D) 4.8 g of N ₂ O ₅ (D) 4.8 g of CO (E) 3.4 g of N ₂ O ₅ (D) 4.8 g of CO (D) 4.8 g of CO (E) 4.8 g of CO (D) 4.8 g of CO (D) 4.8 g of CO (D) 4.8 g of CO (E) 4.8 g of CO (D) 4.8 g of CO (D) 4.8 g of CO (D) 4.8 g of CO (E) 4.8 g of CO (D) 4.		reaction proceeds	reaction proceeds		reaction proceeds
 (A) 3.6 g of H₂O (B) 4.8 g of C₂H₃OH (C) non-volatile or (D) volatile or thermally (A) non-volatile or thermally unstable stable thermally stable unstable thermally unstable stable thermally stable unstable (A) NH₃>SO₂>Cl₂>CO₂ (B) NH₃>CO₂>SO₂>Cl₂ (C) Cl₂>SO₂>CO₂>NH₃ (D) NH₃>CO₂>Cl₂> (A) NH₃>SO₂>Cl₂>CO₂ (B) NH₃>CO₂>SO₂>Cl₂ (C) Cl₂>SO₂>CO₂>NH₃ (D) NH₃>CO₂>Cl₂> (D) In order to raise the boiling point of water upto 110°C, the external pressure should be (A) between 760 torr (B) between 200 torr (C) 765 torr (D) any value of pressure and 1200 torr and 760 torr (C) H₂O (D) BF₃ (A) NH₃ (B) CHCl₃ (C) H₂O (D) BF₃ (B) CHCl₃ (C) 2.0 (D) 1.5 			1 1	proceeds	
 (A) 3.6 g of H₂O (B) 4.8 g of C₂H₃OH (C) non-volatile or (D) volatile or thermally (A) non-volatile or thermally unstable stable thermally stable unstable thermally unstable stable thermally stable unstable (A) NH₃>SO₂>Cl₂>CO₂ (B) NH₃>CO₂>SO₂>Cl₂ (C) Cl₂>SO₂>CO₂>NH₃ (D) NH₃>CO₂>Cl₂> (A) NH₃>SO₂>Cl₂>CO₂ (B) NH₃>CO₂>SO₂>Cl₂ (C) Cl₂>SO₂>CO₂>NH₃ (D) NH₃>CO₂>Cl₂> (D) In order to raise the boiling point of water upto 110°C, the external pressure should be (A) between 760 torr (B) between 200 torr (C) 765 torr (D) any value of pressure and 1200 torr and 760 torr (C) H₂O (D) BF₃ (A) NH₃ (B) CHCl₃ (C) H₂O (D) BF₃ (B) CHCl₃ (C) 2.0 (D) 1.5 	12) The largest number of 1	molecules are present in:	(C) 2.8 g of CO	(D) 5.4 g of N_2O_5
(A) non-volatile or thermally unstable stable thermally unstable stable thermally unstable stable thermally unstable 14) The order of the rate of diffusion of gases NH ₃ , SO ₂ , Cl ₂ and CO ₂ is: (A) NH ₃ >SO ₂ >Cl ₂ >CO ₂ (B) NH ₃ >CO ₂ >SO ₂ >Cl ₂ (C) Cl ₂ >SO ₂ >CO ₂ >NH ₃ (D) NH ₃ >CO ₂ >Cl ₂ > (A) NH ₃ >SO ₂ >Cl ₂ >CO ₂ (B) NH ₃ >CO ₂ >SO ₂ >Cl ₂ (C) Cl ₂ >SO ₂ >CO ₂ >NH ₃ (D) NH ₃ >CO ₂ >Cl ₂ > (D) any value of pressure and 1200 torr (B) between 200 torr (C) 765 torr (D) any value of pressure and 1200 torr and 760 torr (C) H ₂ O (D) BF ₃ (A) NH ₃ (B) CHCl ₃ (C) H ₂ O (D) BF ₃ (B) CHCl ₃ (C) H ₂ O (D) 1.5		(A) $3.6 \text{ g of H}_2\text{O}$	(B) 4.8 g of C2H5OH	a for separation when the pr	oduct to be separated is.
(A) non-volatile or thermally unstable stable thermally unstable thermally unstable thermally unstable stable thermally unstable unstable thermally unstable thermally unstable thermally unstable thermally unstable stable thermally unstable thermally unstable thermally unstable thermally unstable thermally unstable thermally unstable unstable thermally unstable unstable thermally un	13) Solvent extraction method i	s a particularly useful technique	(C) non-volatile or	(D) volatile or thermally
14) The order of the rate of diffusion of gases NH ₃ , SO ₂ , Cl ₂ and CO ₂ is: (A) NH ₃ >SO ₂ >Cl ₂ >CO ₂ (B) NH ₃ >CO ₂ >SO ₂ >Cl ₂ (C) Cl ₂ >SO ₂ >CO ₂ >NH ₃ (D) NH ₃ >CO ₂ >Cl ₂ > (C) Cl ₂ >SO ₂ >CO ₂ >NH ₃ (D) NH ₃ >CO ₂ >Cl ₂ > (D) NH ₃ >CO ₂ >Cl ₂ > (D) NH ₃ >CO ₂ >Cl ₂ > (C) Cl ₂ >SO ₂ >CO ₂ >NH ₃ (D) NH ₃ >CO ₂ >Cl ₂ > (D) In order to raise the boiling point of water upto 110°C, the external pressure should be (A) between 760 torr (B) between 200 torr (C) 765 torr (D) any value of pressure and 1200 torr and 760 torr (C) H ₂ O (D) BF ₃ (A) NH ₃ (B) CHCl ₃ (C) H ₂ O (D) BF ₃ (B) CHCl ₃ (C) H ₂ O (D) 1.5		(A) non-volatile or	(B) volatile of thermany	thermally stable	unstable
 (A) NH₃>SO₂>Cl₂>CO₂ (B) NH₃>CO₂ Bo₂ Co₂ (Co₂) (B) NH₃>CO₂ Bo₂ Co₂ Co₂ (Co₂) (D) NH₃>CO₂ Bo₂ Co₂ (D) NH₃>CO₂ Bo₂ Co₂ (D) NH₃ (D) any value of pressure and 120°C, the external pressure should be (B) between 20°C torr (C) 76°C torr (D) any value of pressure and 120°C torr and 76°C torr (D) any value of pressure (B) Which of the following molecules has zero dipole moment? (C) H₂O (D) BF₃ (A) NH₃ (B) CHCl₃ (C) H₂O (D) BF₃ (B) The pH of 10⁻³ mol dm⁻³ of an aqueous solution of H₂SO₄ is (C) 2.0 (D) 1.5 		thermally unstable		~ a 1 CO in	(D) MIL > CO > CL > S(
15) In order to raise the boiling point of watch upto 170 s, 765 torr (A) between 760 torr (B) between 200 torr (C) 765 torr and 1200 torr and 760 torr 16) Which of the following molecules has zero dipole moment? (A) NH ₃ (B) CHCl ₃ (C) H ₂ O (D) any value of pressure (D) BF ₃ (D) BF ₃ (D) The pH of 10 ⁻³ mol dm ⁻³ of an aqueous solution of H ₂ SO ₄ is (A) 3.0 (B) 2.7 (C) 2.0 (D) 1.5	14	1) The order of the rate of	O ₂ (B) NH ₂ >CO ₂ >SO ₂ >C	l_2 (C) $Cl_2>SO_2>CO_2>N$	H_3 (D) $NH_3 > CO_2 > CI_2 > SC$
(A) between 760 torr (B) between 255 toric pressure and 1200 torr and 760 torr 16) Which of the following molecules has zero dipole moment? (A) NH ₃ (B) CHCl ₃ (C) H ₂ O (D) BF ₃ (B) The pH of 10^{-3} mol dm^{-3} of an aqueous solution of H_2SO_4 is (E) 2.7 (C) 2.0 (D) 1.5		(A) $NH_3 > 5U_2 > U_1 > V_2$	iling point of water upto	110 0,	sure should be
and 1200 torr and 760 torr 16) Which of the following molecules has zero dipole moment? (A) NH ₃ (B) CHCl ₃ (C) H ₂ O (B) The pH of 10^{-3} mol dm^{-3} of an aqueous solution of H_2SO_4 is (C) 2.0 (D) 1.5	13	5) In order to raise the bo	(B) between 200 torr	(C) 765 torr	(D) any value of
16) Which of the following molecules has zero dipole moment? (A) NH ₃ (B) CHCl ₃ (C) H ₂ O (D) BF ₃ 17) The pH of 10^{-3} mol dm^{-3} of an aqueous solution of H_2SO_4 is (A) 3.0 (B) 2.7 (C) 2.0 (D) 1.5		and 1200 torr	and 760 torr		pressure
(A) NH ₃ (B) CHC ₁₃ (C) 2.2 17) The pH of 10^{-3} mol dm^{-3} of an aqueous solution of H_2SO_4 is (D) 1.5 (A) 3.0 (B) 2.7 (C) 2.0		O MILL -Cthe fellowing	ng molecules has zero dipo	ole moment?	(D) DE
(A) NH ₃ (B) Chors (B) Chors (C) 2.0 (D) 1.5 (A) 3.0 (B) 2.7 (C) 2.0					(D) RL3
(A) 3.0 (B) 2.7		(A) NH ₃	dm^{-3} of an aqueous solut	ion of H_2SO_4 is	(D) 1.5
(A) (B) (B)	1	7) The prior to more	(B) 2.7	(C) 2.0	(D) 1.5
		(A) 3.0	(~)	(1)	

1125 - 1123 - 15000 (4)

